Introducción a la teoría de probabilidades y sus aplicaciones Volumen I
Tipo de material:
Tipo de ítem | Biblioteca actual | Signatura topográfica | Estado | Fecha de vencimiento | Código de barras | |
---|---|---|---|---|---|---|
![]() |
Biblioteca Dr. Jorge S. Muntaner Coll | 519.21 FEL v.1 (Navegar estantería(Abre debajo)) | Disponible | 000253 |
Problemas, al final de cada capítulo
Respuestas a los problemas e índice general p. 475-504
Introducción : la naturaleza de la teoría de probabilidades
El espacio muestral
Elementos de análisis combinatorio
Fluctuaciones en lanzamientos de monedas y caminatas al azar
Combinación de eventos
Probabilidad condicional. Independencia estocástica
Las distribuciones binomial y de Poisson
La aproximación normal a la distribución binomial
Sucesiones ilimitadas de ensayos de Bernoulli
Variables aleatorias : esperanza
La ley de los grandes números
Variables con valores enteros. Funciones generatrices
Distribuciones compuestas. Procesos de ramificación
Eventos recurrentes. Teoría de la renovación
Caminata al azar y problemas de ruina
Cadenas de Markov
La manipulación algebraica de las cadenas finitas de Markov
Los procesos estocásticos más simples que dependen del tiempo
No hay comentarios en este titulo.